GCE: Analysis, measure theory, Lebesgue integration No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Give an example of $f_{n}, f \in L^{1}(\mathbb{R})$ such that $f_{n} \rightarrow f$ uniformly, but $\left\|f_{n}\right\|_{1}$ does not converge to $\|f\|_{1}$.

Exercise 2:

Show that for all $\epsilon>0$ and all $f \in L^{1}(\mathbb{R}), \exists n \in \mathbb{N}$ such that $\left\|f-f_{n}\right\|_{1}<\epsilon$ for some f_{n} with $\left|f_{n}\right| \leq n$ and $f_{n}=0$ on $\mathbb{R} \backslash[-n, n]$.

Exercise 3:

Let (X, \mathcal{A}, μ) be a measure space.
(i). If f is in $L^{1}(X) \cap L^{\infty}(X)$, show that $|f|^{p} \in L^{1}(X)$ for all p in $(1, \infty)$.
(ii). If f is in $L^{1}(X) \cap L^{\infty}(X)$, show that

$$
\lim _{p \rightarrow \infty}\left(\int|f|^{p}\right)^{1 / p}=\|f\|_{\infty} .
$$

(iii). Set $A=\{x \in X:|f(x)|>0\}$. If f is in $L^{\infty}(X), \mu(A)<\infty$, and $\mu(A) \neq 1$, find

$$
\lim _{p \rightarrow 0^{+}}\left(\int|f|^{p}\right)^{1 / p}
$$

Hint: It may be helpful to cover separately the case where $\|f\|_{\infty}=1$.
(iv). We now assume that the set A defined in (iii). satisfies $\mu(A)=1$, that f is in $L^{\infty}(X)$, and $\ln |f|$ is in $L^{1}(X)$, find

$$
\lim _{p \rightarrow 0^{+}}\left(\int|f|^{p}\right)^{1 / p}
$$

