GCE: Analysis, measure theory, Lebesgue integration No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Give an example of $f_n, f \in L^1(\mathbb{R})$ such that $f_n \to f$ uniformly, but $||f_n||_1$ does not converge to $||f||_1$.

<u>Exercise 2</u>:

Show that for all $\epsilon > 0$ and all $f \in L^1(\mathbb{R})$, $\exists n \in \mathbb{N}$ such that $||f - f_n||_1 < \epsilon$ for some f_n with $|f_n| \leq n$ and $f_n = 0$ on $\mathbb{R} \setminus [-n, n]$.

Exercise 3: Let (X, \mathcal{A}, μ) be a measure space. (i). If f is in $L^1(X) \cap L^{\infty}(X)$, show that $|f|^p \in L^1(X)$ for all p in $(1, \infty)$. (ii). If f is in $L^1(X) \cap L^{\infty}(X)$, show that

$$\lim_{p \to \infty} (\int |f|^p)^{1/p} = ||f||_{\infty}.$$

(iii). Set $A = \{x \in X : |f(x)| > 0\}$. If f is in $L^{\infty}(X)$, $\mu(A) < \infty$, and $\mu(A) \neq 1$, find

$$\lim_{p \to 0^+} (\int |f|^p)^{1/p}$$

Hint: It may be helpful to cover separately the case where $||f||_{\infty} = 1$.

(iv). We now assume that the set A defined in (iii). satisfies $\mu(A) = 1$, that f is in $L^{\infty}(X)$, and $\ln |f|$ is in $L^{1}(X)$, find

$$\lim_{p \to 0^+} (\int |f|^p)^{1/p}.$$